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Two-Level LSTM for Sentiment Analysis With
Lexicon Embedding and Polar Flipping

Ou Wu , Tao Yang , Mengyang Li, and Ming Li

Abstract—Sentiment analysis is a key component in various
text mining applications. Numerous sentiment classification tech-
niques, including conventional and deep-learning-based methods,
have been proposed in the literature. In most existing methods,
a high-quality training set is assumed to be given. Nevertheless,
constructing a high-quality training set that consists of highly
accurate labels is challenging in real applications. This difficulty
stems from the fact that text samples usually contain complex
sentiment representations, and their annotation is subjective. We
address this challenge in this study by leveraging a new label-
ing strategy and utilizing a two-level long short-term memory
network to construct a sentiment classifier. Lexical cues are useful
for sentiment analysis, and they have been utilized in conventional
studies. For example, polar and negation words play important
roles in sentiment analysis. A new encoding strategy, that is, ρ-
hot encoding, is proposed to alleviate the drawbacks of one-hot
encoding and, thus, effectively incorporate useful lexical cues.
Moreover, the sentimental polarity of a word may change in dif-
ferent sentences due to label noise or context. A flipping model is
proposed to model the polar flipping of words in a sentence. We
compile three Chinese datasets on the basis of our label strat-
egy and proposed methodology. Experiments demonstrate that
the proposed method outperforms state-of-the-art algorithms on
both benchmark English data and our compiled Chinese data.

Index Terms—Flipping, lexicon embedding, long short-term
memory (LSTM), sentiment analysis, text classification.

I. INTRODUCTION

TEXT is important in many artificial intelligence applica-
tions. Among various text mining techniques, sentiment

analysis is a key component in applications, such as public
opinion monitoring and comparative analysis. Sentiment anal-
ysis can be divided into three problems according to input
texts, namely, sentence, paragraph, and document levels. This
study focuses on sentence and paragraph levels.
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Text sentiment analysis is usually considered a text
classification problem. Almost all existing text classifica-
tion techniques are applied to text sentiment analysis [1].
Typical techniques include bag-of-words (BOW)-based [2],
topic model-based [3], deep learning-based [4], and lexicon-
based (or rule-based) methods [5].

Although many achievements have been made and senti-
ment analysis has been successfully used in various commer-
cial applications, its accuracy can be further improved. The
construction of a high-accuracy sentiment classification model
usually entails the challenging compilation of training sets
with numerous samples and sufficiently accurate labels. The
reason behind this difficulty is two-fold. First, the sentiment
is somewhat subjective, and a sample may receive different
labels from different users. Second, some texts contain com-
plex sentiment representations, and a single label is difficult
to provide. We conduct a statistical analysis of public Chinese
sentiment text sets in GitHub. The results show that the aver-
age label error is larger than 10%. This error value reflects the
degree of difficulty of sentiment labeling.

Negation and interrogative sentences are difficult to clas-
sify when deep-learning-based methods are applied. Although
lexicon-based methods can deal with particular types of
negation sentences, their generalization capability is poor.

We address the above issues with a new methodology. First,
we introduce a two-stage labeling strategy for sentiment texts.
In the first stage, annotators are invited to label a large num-
ber of short texts with relatively pure sentiment orientations.
Each sample is labeled by only one annotator. In the sec-
ond stage, a relatively small number of text samples with
mixed sentiment orientations are annotated, and each sample
is labeled by multiple annotators. Second, we propose a two-
level long short-term memory (LSTM) [6] network to achieve
two-level feature representation and classify the sentiment ori-
entations of a text sample to utilize two labeled datasets. Third,
in the proposed two-level LSTM network, lexicon embedding
is leveraged to incorporate linguistic features used in lexicon-
based methods. Finally, the labels in a word-polar dictionary
usually contain noise and the polarity of a word can also
change in different contexts. A flipping model is proposed to
model the sentiment polarity flipping of a word in a sentence.

Three Chinese sentiment datasets are compiled to investi-
gate the performance of the proposed methodology. The exper-
imental results demonstrate the effectiveness of the proposed
methods. Our work is new in the following aspects.

1) A highly effective labeling strategy is adopted. Labeling
a high-quality training set is difficult in sentiment
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analysis. In our labeling strategy, samples are divided
into ones with relatively pure sentiment orientations
and ones with relatively complex sentiment orientations.
This procedure is easily performed in practice.

2) A two-level LSTM network is proposed. Our labeling
procedure yields two training sets with different senti-
ment levels; therefore, we propose a two-level LSTM
network that can effectively utilize the two datasets.

3) Lexicon embeddings are introduced based on a new
encoding strategy. To incorporate useful cues that are
usually used in lexicon-based methods, an effective
encoding strategy, namely, ρ-hot encoding, is proposed
in this work to address the limitations of the classical
one-hot encoding.

4) A flipping model is proposed to model polar flipping of
words. Polar words are particularly important in senti-
ment analysis. However, the polar labels in a polar-word
dictionary are not definitely right because the dictionary
is very likely to contain label noise and the polarity of
a word changes according to its context. For example,
the polarity of “heavy” is positive in “the fish is heavy,”
whereas it is negative in “the cell phone is heavy.” To
this end, a flipping model1 is established to describe the
flipping of the polarity of words in texts.

The remainder of this article is organized as follows.
Section II briefly reviews related work. Section III describes
our methodology. Section IV reports the experimental results
and Section V concludes the study.

II. RELATED WORK

A. Text Sentiment Analysis

Sentiment analysis aims to predict the sentiment polarity of
an input text sample. Sentiment polarity can be divided into
negative, neutral, and positive in many applications.

The existing sentiment classification methods can be
roughly divided into two categories, namely, lexicon-based and
machine-learning-based methods [9]. Lexicon-based meth-
ods [10] construct polar and negation word dictionaries.
A set of rules for polar and negation words is compiled
to judge the sentiment orientation of a text document.
This method cannot effectively predict implicit orientations.
Machine-learning-based methods [11], [12] utilize a standard
binary or multicategory classification approach. Different fea-
ture extraction algorithms, including BOW [13] and part of
speech (POS) [11], are used. Word embedding and deep neu-
ral networks have recently been applied to sentiment analysis,
and promising results have been obtained [14], [15].

B. Lexion-Based Sentiment Classification

Lexicon-based methods are actually implemented in an
unsupervised manner. They infer the sentiment categories of
input texts on the basis of polar and negation words. The pri-
mary advantage of these methods is that they do not require
labeled training data. The key to lexicon-based methods is

1In theory, our model should be useful in any arbitrary method that
leverages the polar labels of words as supervised information, such as [7]
and [8].

Fig. 1. Lexicon-based approach for sentiment classification.

the lexical resource construction, which maps words into
a category (positive, negative, neutral, or negation). Senti-
WordNet [16] is a lexical resource for English text sentiment
classification. For Chinese texts, Senti-HowNet is usually used.

Fig. 1 characterizes a typical lexicon-based sentiment clas-
sification approach. The approach iteratively checks each word
in an input sentence from left to right. The weight score of
each word is calculated according to the procedure shown
in Fig. 1. The final sentiment score is the average score of
the words with weight scores. The scores of positive, neutral,
and negative sentiments are denoted as “+1,” “0,” and “−1,”
respectively. According to the lexicon-based algorithm shown
in Fig. 1, the sentiment score of “it is not bad” is 0.25, and
the sentiment score of “it is good” is 1. However, the score
of “it is not so bad” is −0.75, and this score is definitely
wrong. Therefore, machine-learning (including feature learn-
ing) methodologies have become the mainstream in sentiment
analysis.

C. Deep-Learning-Based Sentiment Classification

Deep learning (including word embedding [17]) has been
applied to almost all text-related applications, such as trans-
lation [18], quality assurance [19], recommendation [20], and
categorization [21]. Popular deep neural networks are divided
into convolutional neural networks (CNNs) [22] and recur-
rent neural networks (RNNs) [23], [24]. Both are utilized in
sentiment classification [25], [26]. Kim [4] investigated the
use of CNN in sentence sentiment classification and achieved
promising results. LSTM [27], a classical type of RNN, is
the most popular network used for sentiment classification. A
binary-directional LSTM [28] with an attention mechanism is
demonstrated to be effective in sentiment analysis.

Deep-learning-based methods rarely utilize the useful
resources adopted in lexicon-based methods. Qian et al. [8]
incorporated lexicon-based cues into the training of an LSTM-
based model. Their proposed method relies on a new loss
function that considers the relationships between polar or cer-
tain types of words (e.g., negation) and those words next to
them in input texts. Our study also combines lexical cues into
LSTM. Nevertheless, unlike Qiao et al.’s study that implic-
itly used lexical cues, the present work explicitly uses lexical
cues in the LSTM network. Shin et al. [29] combined the lex-
icon embeddings of polar words with word embeddings for
sentiment classification. The difference between our approach
and the method proposed by Shin et al. is discussed in
Section III-C5.
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Numerous studies on aspect-level sentiment analysis
exist [30]–[32]. This problem is different from the sentiment
classification investigated in this study.

III. METHODOLOGY

This section first introduces our two-stage labeling proce-
dure. A two-level LSTM is then proposed. Lexicon embedding
is finally leveraged to incorporate lexical cues.

A. Two-Stage Labeling

As stated earlier, the sentiment is subjective, and texts usu-
ally contain mixed sentiment orientations. Therefore, texts’
sentiment orientations are difficult to label. In our study, three
sentiment labels, namely, positive, neutral, and negative, are
used. The following sentences are taken as examples.

S1: The service is poor. The taste is good, but the rest is
not so bad.

S2: The quality of the phone is good, but the appearance
is just so-so.

In user annotation, the labels of these two sentences depend
on users. If a user is concerned about service, then the label of
S1 may be “negative.” In contrast, for another user who does
not care about service, the label may be “positive.” Similarly,
a user may label S2 as positive if he cares about quality.
Another user may label it as negative if the conjunction “but”
attracts the user’s attention more. Another user may label it as
“neutral” if they are concerned about quality and appearance.

The underlying reason is that sentiment is more subjective
than semantics. In related research on subjective catego-
rization, such as visual aesthetics, each sample is usually
repeatedly annotated by multiple annotators, and the aver-
age label is taken as the final label of the sample. This
labeling strategy can also be applied to text sentiment anno-
tation. However, we argue that this strategy is unsuitable for
a (relatively) large number of samples. The reason lies in the
following two aspects.

1) Multiple annotators for a large number of datasets
require a large budget.

2) In our practice, annotators claim that their judgment cri-
teria on sentiment become fused on texts with mixed
sentiment orientations (e.g., S1 and S2) over time during
labeling, and they become bored accordingly.

A two-stage labeling strategy is adopted in this study. In
the first stage, each sentence/paragraph is divided into several
clauses according to punctuation. The sentiment of each par-
titioned clause is relatively easy to annotate; therefore, each
clause is labeled by only one user. In the second stage, a rela-
tively small-sized sentence/paragraph set is labeled, and each
sentence is labeled by all involved annotators. We still take the
two sentences, S1 and S2, as examples. S1 and S2 are split
into clauses, as shown below.

1) S1:
a) S1.1: The service is poor.
b) S1.2: The taste is good.
c) S1.3: But the rest is not so bad.

2) S2:
a) S2.1: The quality of the phone is good.

b) S2.2: But the appearance is just so-so.
Each of the above clauses is labeled by only one annotator.
The annotation in the first stage is easy to perform; thus, the
number of clauses can be larger than the number of sentences
used in the second labeling stage.

B. Two-Level LSTM

Given two training datasets (denoted by T1 and T2), a new
learning model should be utilized. LSTM2 is a widely used
deep neural network in deep-learning-based text classification.

LSTM is a typical RNN model for short-term memory,
which can last for a long period of time. An LSTM is appli-
cable to classify, process, and predict time-series information
with given time lags of unknown size. A common LSTM block
is composed of a cell, an input gate, an output gate, and a
forget gate.

When LSTM is used to classify an input sentence, the hid-
den vectors (ht) of each input vector are summed to form a
dense vector that can be considered the feature representation
of the input sentence, that is

vt =
∑

t

ht. (1)

In many applications, a bidirectional LSTM (Bi-LSTM)
structure is usually used. In Bi-LSTM, forward and backward
information are considered for information at time t; hence, the
context is modeled. Bi-LSTM is thus significantly reasonable
for text processing tasks. In our two-level LSTM, Bi-LSTM
is used at each level.

The output hidden state at time t of a Bi-LSTM block can
be described as follows:

−→
h t = −→o t ⊗ tanh

(−→c t
)

←−
h t = ←−o t ⊗ tanh

(←−c t
)

ht =
[−→

h t,
←−
h t

]
(2)

where
−→
h t,
−→o t, and −→c t are the corresponding vectors at time

t in the forward LSTM block and
←−
h t,
←−o t, and ←−c t are the

corresponding vectors at time t in the backward LSTM block.
H = {h1, . . . , hT}. When attention is used, the dense feature
vector γ of an input sentence is calculated as follows:

α = softmax
(
wTH

)

γ = HαT (3)

where α is the vector that consists of attention weights.
Our proposed network consists of two levels of the LSTM

network. In the first level, a Bi-LSTM is used and learned on
the basis of the first training set T1. This level is a conventional
sentiment classification process. The input of this level is a
clause, and the input xt is the embedding of the basic unit of
the input texts.3 The network is shown in Fig. 2(a).

In the second level, a Bi-LSTM is also used and learned
on the basis of the second training set T2. The input of this

2CNN is another widely used text classification model. Our idea can also
be applied to CNN.

3In English texts, the basic unit is usually a word; in Chinese texts, the
basic unit is a Chinese word or character.
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Fig. 2. Proposed two-level LSTM network (this network does not including the lexicon embedding and the polar flipping model which are introduced in
Figs. 5 and 7). (a) First-level bi-LSTM. (b) Whole two-level structure.

level is a sentence or a paragraph. The input xt consists of two
parts.4 The first part is the feature vector of the t-th clause.
The feature vector is generated by the first-level network. In
other words, the dense feature shown in Fig. 2(a) (γ ) is used.
The second part is the sentiment score (not predicted label)
output by the first-level network. The sentence S1 (The service
is poor. The taste is good, but the rest is not so bad.) used in
Section III-A is taken as an illustrative example. S1 contains
three clauses. Let σ be the sigmoid function. The input vector
of S1 can be represented by

S1 : {η1, η2, η3}
where

ηi =
{

y(1)
i , γ

(1)
i

}

y(1)
i = σ

(
Wγ

(1)
i + b

)

i = 1, 2, 3 (4)

where y(1)
i is the output score of the ith clause by the first-

level LSTM and γ
(1)
i is the feature representation of the ith

clause by the first LSTM. The network of the entire two-level
network is shown in Fig. 2(b). The loss function of the entire
network is defined as follows:

l =
∑

n

[
loss

(
yn, y′n

)+ λ

nI

∑

i

loss
(
yni, y′ni

)
]

(5)

where yn and y′n are the true and predicted labels of the nth
sample, respectively, yni and y′ni are the true and predicted
label of the ith clause of the nth sample, respectively; λ is the
parameter, and nI is the number of clauses in the ith sample.

C. Lexical Embedding

Lexicon embedding aims to integrate a wide range of lexical
cues into the two-level LSTM network. Based on our empiri-
cal analysis and previous studies, key lexical words, POS, and
conjunction cues are considered. The proposed lexicon embed-
ding is based on ρ-hot encoding. Therefore, ρ-hot encoding
is first described.

4The third part is lexicon embedding which will be introduced in
Section III-C4.

1) ρ-Hot Encoding: For categorical data, one-hot encod-
ing is the most widely used encoding strategy when different
categories are independent.5 For example, if one-hot encoding
is used to represent three categories, namely, positive, neutral,
and negative, the encoding vectors for the three categories are
[1, 0, 0]T , [0, 1, 0]T , and [0, 0, 1]T , respectively.

In this work, many lexical cues are categorical data, and
different categories are independent. These lexical cues can
directly be represented by one-hot encoding. The encoded vec-
tors for lexical cues are then concatenated with other vectors,
such as character/word embedding. Based on our empirical
evaluations, a more effective encoding is proposed based on
the conventional one-hot encoding. The encoding strategy is
defined as follows:

ρ − hot encoding : νρ,n = ρ · ν1 ⊗ 1n×1 (6)

where νρ,n is the ρ-hot encoded vector, ρ is the propor-
tion parameter, ν1 is the one-hot encoded vector, 1n×1 is an
n-dimensional vector, and ⊗ is the tensor product. If both ρ

and n are equal to 1, then ρ-hot encoding is reduced to one-hot
encoding. The parameter n is applied to increasing the length
of the final encoded vector.

When ρ equals 0.6 and n equals 4. For a 3-D one-hot
encoded vector ν1, we have

if ν1 = [1, 0, 0]T

νρ = 0.6 · ν1 ⊗ 14×1

= [0.6, 0.6, 0.6, 0.6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T

if ν1 = [0, 1, 0]T

νρ = 0.6 · ν1 ⊗ 14×1

= [0, 0, 0, 0, 0.6, 0.6, 0.6, 0.6, 0, 0, 0, 0, 0, 0, 0, 0]T

if ν1 = [0, 0, 1]T

νρ = 0.6 · ν1 ⊗ 14×1

= [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.6, 0.6, 0.6, 0.6]T .

(7)

5When different categories are correlated, sophisticated encoding strategies
can be utilized. For example, one-hot is a traditional encoding for words. Many
word-embedding methods are proposed with consideration of the relation
among words.
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The numerical examples in (7) indicate that the obtained
ρ-hot encoded vector (νρ) can have varied values for nonzero
elements and longer lengths compared with the corresponding
one-hot encoded vector (ν1). Similar yet simple tricks for the
increasing of the vector length have been successfully used in
previous studies [33], [34].

So far, there is no accurate theoretical explanation for
our proposed ρ-hot encoding. Nevertheless, one-hot encod-
ing presents two main limitations when the encoded vector is
concatenated with other vectors.

1) The value difference between the elements of one-hot
encoded vectors and those of other encoded vectors (e.g.,
word embedding vectors) may be large. Fig. 3 shows
the histogram of the values of the elements of the word
embedding vectors. The magnitudes of most elements
are smaller than 1.

2) The lengths of one-hot encoded vectors are usu-
ally shorter than those of other encoded vectors.
Consequently, the proportion of the one-hot encoded part
is small in the concatenated vectors.

The above two limitations may affect the final sentiment
analysis performance, whereas our proposed ρ-hot encoding
alleviated these two limitations.

2) Embedding for Key Lexical Words: Most lexicon-based
sentiment methods rely on four types of words, namely, pos-
itive, negative, neutral, and negation. These words are useful
cues for predicting the sentiment labels of input texts. The
incorporation of these words should also be useful. A previous
study has shown that a typical document comprises approx-
imately 8% of such words [35]. Sentiments expressed in
a conditional sentence can be difficult to determine due to
the semantic condition. The sentiment polarities of interrog-
ative sentences are also difficult to classify according to our
empirical study. Because the automatically judging whether
a sentence is conditional or interrogative is challenging, we
directly consider suppositive and interrogative words.

Five types of words, namely, positive (Pos), negative (Neg),
negation (Nt), suppositive (Sup), and interrogative (Int), are
represented by the proposed encoding method. The remaining
words, which do not belong to any of the above five types,
are called “others (Oth)” instead of “neutral” because some
words, such as “the,” are unrelated to “sentiment.” The value
of n in (6) is set as 10. The encoded vectors are as follows:

Pos :
[
ρ1×10, 01×10, 01×10, 01×10, 01×10, 01×10

]T

Neg :
[
01×10, ρ1×10, 01×10, 01×10, 01×10, 01×10

]T

Nt :
[
01×10, 01×10, ρ1×10, 01×10, 01×10, 01×10

]T

Sup :
[
01×10, 01×10, 01×10, ρ1×10, 01×10, 01×10

]T

Int :
[
01×10, 01×10, 01×10, 01×10, ρ1×10, 01×10

]T

Oth :
[
01×10, 01×10, 01×10, 01×10, 01×10, ρ1×10

]T
.

In the proposed ρ-hot embedding, the parameter ρ can be
learned during training.

Certain types (e.g., positive, negative, and negation) of
words should play more important roles than other words do
in texts; therefore, their embeddings are also used in the atten-
tion layer. A new LSTM based on our lexicon embedding is

Fig. 3. Histogram of the values in word embedding vectors. Most values are
smaller than 1.

Fig. 4. First-level LSTM with lexicon embedding in both the input and
attention layers.

proposed, as shown in Fig. 4. The attention layer and final
dense vector of the network in Fig. 2(a) are calculated as
follows:

αt = softmax

(
Wα

[
ht

lt

]
+ bi

)

γ =
∑

t

αt

[
ht

lt

]
(8)

where αt is the attention weight for the t-th input, lt is the
lexicon embedding for key lexical words for the t-th input,
and γ is the final dense vector. Equation (7) is used in the
first-level LSTM.

3) Embedding for POS: POS is usually used as a key cue in
sentiment analysis [36]. Intuitively, adjective and adverb words
are very likely to be more important than some other types of
words, such as the adjective and article. To this end, we use
additional lexicon embedding based on POS information. This
new lexicon embedding is also applied to the attention layer.
The motivation lies in that certain types of POS should play
important roles in sentiment.

The proposed ρ-hot embedding is still applied to POS types
in this study. According to our initial case studies, eight POS
types are considered. They are noun, adjective, verb, pro-
noun, adverb, preposition, accessory, and others. The eight
POS types are represented by the proposed ρ-hot encoding.
We let n in (6) be 10. The first three POS types are as follows:

Noun :
[
ρ1×10, 01×10, 01×10, 01×10, . . . , 01×10

]T

Adj :
[
01×10, ρ1×10, 01×10, 01×10, . . . , 01×10

]T
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Verb :
[
01×10, 01×10, ρ1×10, 01×10, . . . , 01×10

]T
.

When POS embedding is used, the attention layer and final
outputs of the network in (3) become

αt = softmax

⎛

⎝Wα

⎡

⎣
ht

lt
ηt

⎤

⎦+ bi

⎞

⎠

γ =
∑

t

αt

[
ht

lt

]
(9)

where ηt is the lexicon embedding for POS of the t-th input.
4) Embedding for Conjunction: Conjunction words play

important roles in sentiment analysis [37]. For example, con-
junctions, such as “but” and “moreover,” usually indicate the
focus of texts and attract readers attention. These words may
be useful cues for attention inference in the second level of our
network. Therefore, conjunctions are considered in the input
of the second-level LSTM.

Once a set of conjunction words is compiled, ρ-hot embed-
ding is used. In our experiments, the number of conjunction
words (including thesaurus) is 13 for Chinese texts and
26 for English texts. Therefore, the parameter n for Chinese
conjunction words in (6) is set as 1.

When conjunction embedding is used for the second-level
layer, the attention layer and final outputs of the network in
Fig. 2(b) are calculated as follows:

βt = softmax

⎛

⎜⎜⎝Wβ

⎡

⎢⎢⎣

y(1)
t

ht
(2)

ωs
t

ωe
t

⎤

⎥⎥⎦+ b′i

⎞

⎟⎟⎠

γ (2) =
∑

t

βt

[
h(2)

t

y(1)
t

]
(10)

where βt is the attention weight for the t-th input clause, h(2)
t

is the hidden vector of the second-level LSTM, ωs
t and ωe

t
are the conjunction embeddings for the first and last words in
the t-th input clause, respectively, and γ (2) is the final dense
vector used for the final classification.

The two-level network with lexicon embedding is shown
in Fig. 5. The lexicon embedding is used in both input and
attention layers.

5) Differences Between Our and Existing Lexicon
Embedding: Shin et al. [29] also embedded lexical
information into sentiment analysis. Three major differ-
ences exist between our method and the method proposed by
Shin et al. [29].

1) The lexicon embedding proposed by Shin et al. uses one-
hot encoding, whereas the proposed method uses a new
encoding strategy that can be considered a soft one-hot
encoding.

2) The lexicon embedding proposed by Shin et al. extends
the lengths of raw encoded vectors. However, the exten-
sion aims to keep the lengths of lexical and word
embeddings equal. Their extension method also only
relies on zero padding and is thus different from the
proposed method.

Fig. 5. Whole two-level LSTM network with lexicon embedding in both the
input and attention layers.

3) Only sentimental words are considered in the lexicon
embedding proposed by Shin et al. On the contrary, sen-
timental words, POS, and conjunctions are considered in
our work.

D. Polar Flipping Model

The polarity of words is crucial in sentiment analysis. Most
rule-based methods mainly rely on polar and negation words.
The word polarity is also usually applied as (partial) super-
vised information in learning-based methods. Qian et al. [8]
leveraged the polar labels to regularize the hidden state of
each word in training texts. They utilized the KL divergence
between the polar label and the predicted label of a word as
the regularization term during training. Although word-level
polar information is proven to be useful in sentiment analysis,
the application of word-level polar information suffers from
the following defects.

1) Because the number of words usually exceeds 10 000,
the labeling of all words’ polarity is not an easy task.
Labeling error is thus unavoidable.

2) The polarities of some words highly depend on their
contexts. Therefore, the polarity of a word may vary in
different texts.

In this work, the word-level polar labels are considered
noisy labels. In noisy-label learning [38], a flipping model
is usually used to model the relationships between (possibly)
noisy and true labels. Inspired by noisy-label learning, a polar
flipping model is proposed. Let P1, P2, and P3 represent the
three polar labels “positive,” “negative,” and “neural,” respec-
tively. Without loss of generalization, the label of a given word
is assumed to be P1. Let x be the representation of the given
word and C be the representation of the context information.
Then, the polar flipping model is described as follows:

P = σ1(x, C)P1

+ [1− σ1(x, C)]{σ2(x, C)P2 + [1− σ2(x, C)]P3} (11)

where both σ1 and σ2 are sigmoid functions. Equation (10)
describes the flipping of the polarity of a word given its
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context. If σ1(x, C) == 1, then P = P1; else if σ2(x, C) == 1,
then P = P2; else P = P3.

In this work, the hidden state vector h of the word in LSTM
is used to represent (x, C) in (10). Therefore, (10) becomes

P = σ1(h)P1 + [1− σ1(h)]{σ2(h)P2 + [1− σ2(h)]P3}. (12)

In noisy-label learning, the noisy rate is usually assumed
to be small. In our model, to control the flipping rate, we
take the flipping loss as an additional regularization term.
Consequently, the loss function defined in (5) becomes

ltotal =
∑

n

[
loss1

(
yn, y′n

)+ λ1

nI

∑

i

loss2
(
yni, y′ni

)

+ λ2

nIK

∑

k

loss3
(
Pnik, P′nik

)
]

(13)

where Pnik and P′nik are the true and the flipped polar labels of
the kth word in the ith clause in the nth sample, λ1 and λ2 are
balance parameters, and nIK is the number of words in the ith
clause of the nth sample. The functions loss1 and loss2 in (12)
are the cross-entropy loss, and the function loss3 is calculated
as follows:

loss3
(
Pnik, P′nik

) = 1− σ1(hnik) (14)

where hnik is the hidden vector of the kth word in the ith clause
in the nth sample. According to the loss function defined in
(12), our method can be viewed as being added supervised
information in the middle layers (both word and clause levels)
of the entire network as shown in Fig. 6. The first-level LSTM
in the proposed two-level network described in Fig. 2(b) is
shown in Fig. 7.

Based on Fig. 7, there are three main differences between
our’s and existing hierarchal networks.

1) Our network depends on a relatively new labeling
strategy, namely, two-stage labeling.

2) Each level of our network is associated with super-
vised information, whereas only the top level is with
supervised information in almost all existing hierarchal
networks.

3) Each level of our network is associated with a loss term
in our network, whereas there is usually only one loss
in existing hierarchal networks.

4) Plentiful lexical cues are embedded into our network,
whereas there is usually only one type of lexical cues
considered in existing networks.

E. Learning Details

The algorithmic steps of the entire learning procedure for
the proposed ρ-hot lexicon embedding-based two-level LSTM
(called ρTl-LSTM) are shown in Algorithm 1. In Algorithm 1,
T1 refers to the training data that consist of clauses and the
labels obtained in the first-stage labeling procedure. T2 refers
to the training data that consist of sentences and the labels
obtained in the second-stage labeling procedure.

The proposed two-level LSTM can be applied to texts with
arbitrary languages. Word information is required in lexical

Fig. 6. Illustrative network structure with supervised information in middle
layers. (a) Loss in existing methods. (b) Loss in our method.

Fig. 7. First-level network with the flipping model. (To simplify the
illustration, only polar information is shown in the lexicon embedding.)

construction regardless of whether a character or word embed-
ding is used. The reason is that the three types of lexicon
embeddings are performed at the word level. Therefore, when
character embedding is used, the lexicon embedding of each
character is the lexicon embedding of the word containing it.

IV. EXPERIMENTS

This section shows the evaluation of the proposed methodol-
ogy in terms of the two-level LSTM network and each part of
the lexicon embedding. Both English benchmark text corpora
and Chinese text corpora are used.

A. Results on Chinese Corpora

In the experiments, three competing algorithms, namely,
BOW, CNN, and (conventional) LSTM, are used. The lexicon
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Algorithm 1 ρTl-LSTM
Input: Training sets T1 and T2; dictionary of key lexi-
cal words; POS for each word; dictionary of conjunction
words; character/word embeddings for each character/word;
parameters λ1 and λ2.
Output: A trained two-level LSTM for sentiment
classification.
Steps:

1. Construct the ρ-hot-based embedding vector for each word
(including punctuation) in the clauses in T1. The embed-
dings include the character/word and lexicon embeddings
of each character/word;

2. Construct the embedding vector for each conjunction word
in each clauses as the input for the second-level LSTM;

3. Train the two-level LSTM on the basis of the input embed-
ding vectors and labels of polar words, the T1 text clauses,
and the T2 text samples; the loss function is defined in (12).

embedding-based method proposed by Shin et al. [29] dis-
cussed in Section III-C5 is also compared.

For BOW, term frequency-inverse document frequency is
utilized to construct features. Ridge regression [39] is used as a
classifier. For CNN, a three-channel CNN is used. For LSTM,
one-layer and two-layer Bi-LSTM with attention are adopted,
and the results of the network with superior performance are
presented. CNN and LSTM are performed on TensorFlow, and
default parameter settings are followed.

The key parameters are searched as follows. The embed-
ding dimensions of characters and words are searched in
[100, 150, 200, 250, 300]. The parameter n in ρ-hot encod-
ing is searched in [1, 3, . . . , 15]. The parameters λ1 and λ2
are searched in [0.001, 0.01, 0.1, 1, 10]. Baidu Chinese word
segmentation API is used.

1) Experimental Data and Labeling: We compile three
Chinese text corpora from online data for three domains,
namely, “hotel,” “mobile phone (mobile),” and “travel.” All
texts are about user reviews. Each text sample collected is
first partitioned into clauses according to Chinese tokens.6

Three clause sets are subsequently obtained from the three
text corpora.

The labels “+1,” “0.5,” and “0” correspond to the three
sentiment classes positive, neutral, and negative, respectively.
The text data are labeled according to our two-stage labeling
strategy.

1) In the first stage, only one user is invited to label each
clause sample as the sentiment orientations for clauses
(or subsentences) are easy to label.

2) In the second stage, five users7 are invited to label each
text sample in the three raw datasets. The average score
of the five users in each sample is calculated. Samples
with average scores located in [0.6, 1] are labeled as

6Token-based token is inaccurate for English text partition. Nevertheless,
the segment results for Chinese texts are acceptable. A more reasonable way
will be investigated in our future work.

7Five graduate students, including three males and two females, were
invited to label the data.

TABLE I
DETAILS OF THE THREE DATA CORPORA. EACH CORPUS CONSISTS OF

RAW SAMPLES (SENTENCES OR PARAGRAPHS) AND PARTITIONED

CLAUSES (SUBSENTENCES)

TABLE II
NUMBERS OF FIVE TYPES OF KEY LEXICAL WORDS

positive. Samples with average scores located in [0, 0.4]
are labeled as negative. Others are labeled as neutral.
The details of the labeling results are shown in Table I.

All the training and test data and the labels are available
online.8

In our experiments, the five types of key lexical words intro-
duced in Section III-C2 are manually constructed. The details
of the five types of words are listed in Table II.9 The con-
junction words are also manually constructed. The number of
conjunction words used in the experiments is 169.

In each experimental run, the training set is compiled on the
basis of the training data listed in Table I. The compiling rule
is specified before each experimental run. The test data are
fixed to facilitate experimental duplication and comparison by
other researchers. The data with the fixed split are available
at our Github page.

2) Results of Existing Methods: In this section, each of
the three raw datasets (associated with their labels) shown in
Table I is used. The clause data are not used. In other words,
the training data used in this section are the same as those
used in previous studies. For each data corpus, 1000 raw data
samples are used as the test data, and the rest are used as the
training data. The involved algorithms are detailed as follows.

1) CNN-C denotes the CNN with (Chinese) character
embedding.

2) CNN-W denotes the CNN with (Chinese) word
embedding.

8https://github.com/Tju-AI/two-stage-labeling-for-the-sentiment-orientation
s/tree/master/data

9The five types of key lexical words are also available and introduced in
our Github project page.
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TABLE III
CLASSIFICATION ACCURACIES OF EXISTING

ALGORITHMS ON RAW SAMPLES

3) CNN-Lex-C denotes the algorithm that also inte-
grates polar words in CNN, which is proposed by
Shin et al. [29]. The (Chinese) character embedding is
used.

4) CNN-Lex-W denotes the algorithm that also inte-
grates polar words in CNN, which is proposed by
Shin et al. [29]. The (Chinese) word embedding is used.

5) Bi-LSTM-C denotes the BI-LSTM with (Chinese) char-
acter embedding.

6) Bi-LSTM-W denotes the Bi-LSTM with (Chinese) word
embedding.

7) Lex-rule denotes the rule-based approach shows in
Fig. 1. This approach is unsupervised.

8) BOW denotes the conventional algorithm that is based
on BOWs features. Four shallow classifiers are used,
namely, logistic regression (LR), support vector machine
(SVM), naive Bayes (NB), and random forest (RF). For
SVM, the parameters C and g are searched via five-fold
cross-validation from {0.1, 1, 5, 10, 100} and {0.01, 0.1,
1, 5, 10}, respectively. For RF, the number of trees is
searched via five-fold cross-validation from {10, 20, 50,
100, 200, 500}.

The accuracies of the above algorithms are listed in
Table III. Overall, Bi-LSTM significantly outperforms CNN
and BOW (p < 0.01) based on the t-test. This conclusion is in
accordance with the conclusion that RNN performs efficiently
against CNN in a broad range of natural language processing
(NLP) tasks on the basis of extensive comparative studies [40].
In addition, CNN-Lex outperforms CNN under both character
and word embeddings (p < 0.05), which suggests that lexicon
cues are useful in sentiment analysis. Lex-rule achieves the
lowest accuracies on all the three datasets. Considering that
the performances of (traditional) CNN, Lex-rule, and BOW
are relatively poor, they are not applied in the remaining parts.

3) Results of Two-Level LSTM Without Lexicon Embedding:
In this experimental comparison, the proposed two-level
LSTM is evaluated, whereas lexicon embedding is not used
in the entire network. The primary goal is to test whether
the introduced two-stage labeling and the two-level network
structure are useful for sentiment analysis.

The raw and clause data listed in Table I are used to perform
the two-level LSTM. Tl-LSTM denotes the two-level LSTM.

TABLE IV
CLASSIFICATION ACCURACIES OF COMPETING ALGORITHMS

TABLE V
CLASSIFICATION ACCURACIES OF TWO-LEVEL LSTM

WITH LEXICON EMBEDDING

“R+C” refers to the mixed data of raw and clause data. The
test data are still the 1000 samples used in Section IV-A2
for each corpus. Table IV shows the classification accuracies.
To ensure that the results differ from those in Table III, we
explicitly add R+C after each algorithm in Table IV. In the last
line of Table IV, the base results for each corpus in Table III
are also listed.

On all the three data corpora, the proposed two-level
network (without lexicon embedding) with character embed-
ding, Tl-LSTM-C, does not significantly outperform other
involved competing methods by conducting t-test. However,
it achieves the highest accuracies on all three data corpora.
The results in Table IV indicate that the performances of Tl-
LSTM on the mixed training and test data (R+C) are better
than those of Bi-LSTM. This comparison indicates that the
proposed two-level LSTM is useful.

In addition, for the involved algorithms, most accuracies
achieved on R+C are higher than the best results only achieved
on “R” listed in Table III. This comparison suggests that the
introduced two-stage labeling is useful.

4) Results of the Entire Two-Level LSTM: In this experi-
mental run, both lexicon embedding and the flipping model are
used in the proposed two-level LSTM or ρTl-LSTM. Table V
shows the results. In order to assess the usefulness of the
flipping model, the results of ρTl-LSTM without considering
flipping are also present.

The performances of TI-LSTM with both lexicon embed-
ding and the flipping model (i.e., ρTl-LSTM) are consistently
better than those of TI-LSTM without lexicon embedding (i.e.,
Tl-LSTM) listed in Table IV and ρTl-LSTM without flipping
(p < 0.05). ρTl-LSTM with flipping also slightly outperforms
ρTl-LSTM without flipping indicating that the flipping mod-
ular is useful in the network. The improved accuracies of
ρTI-LSTM over Tl-LSTM on the three data corpora are listed
in Table VI.
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TABLE VI
ACCURACY IMPROVEMENT OF TWO-LEVEL LSTM WHEN LEXICON

EMBEDDING WAS USED OVER THOSE OF TWO-LEVEL LSTM
WITHOUT LEXICON EMBEDDING

TABLE VII
ACCURACIES OF THE COMPETING METHODS ON ENGLISH

CORPORA IN ρ-HOT ENCODING

B. Results on English Corpora

Two benchmark datasets are used for evaluating the
proposed models: 1) movie review (MR) [41] and 2) Stanford
sentiment treebank (SST) [42]. The former consists of 10 662
sentences with binary classes (positive and negative); while
the latter consists of 11 885 sentences with five classes {very
negative, negative, neutral, positive, very positive}.

The involved competing algorithms are CNN, LSTM/Bi-
LSTM, Tree-LSTM [43], NCSL [7], and LR-Bi-LSTM [8].
The last two methods are two state-of-the-art methods that
also utilize the word-level polar information. The results of
these competing algorithms are obtained directly from the
results presented in Qian et al.’s work [8]. The polar and
negation words are compiled by following the method used
in Qian et al.’s work [8]. The number of conjunction words
in the dictionary is 207 which are attributed to 13 classes of
words.

The proposed method achieves the highest accuracies
among all the competing methods, including state-of-the-art
NCSL and LR-Bi-LSTM, shown in Table VII. The increased
accuracies on both sets are smaller than those on datasets
reported in Section IV-A. The main reason lies in that the
average numbers of clauses on both MR and SST are less
than 1.5.

C. Disussion

The experimental evaluation discussed in Section IV-B ver-
ifies the effectiveness of the proposed method, ρTl-LSTM, on
fixed training/testing data split. In this section, we conducted
more experiments via 10-cross-validation on each data cor-
pus to further evaluate the proposed method. Moreover, unlike
the conventional RNN, ρTl-LSTM contains lexicon embed-
ding that consists of new technique and components, including
ρ-hot encoding, embedding for polar words, embedding for
POS, and embedding for conjunctions. Therefore, this sec-
tion evaluates the performances of the involved technique and
embeddings separately.

TABLE VIII
CLASSIFICATION ACCURACIES OF COMPETING METHODS VIA

TEN-FOLD CROSS-VALIDATION

Fig. 8. Classification accuracies under different ρ values. #1-C and
#1-W represent ρTl-LSTM-C and ρTl-LSTM-W on the first (travel) cor-
pus, respectively; #2-C and #2-W represent ρTl-LSTM-C and ρTl-LSTM-W
on the second (hotel) corpus, respectively; and #3-C and #3-W represent
ρTl-LSTM-C and ρTl-LSTM-W on the third (hotel) corpus, respectively. ρ∗
is the searched optimal value.

1) Ten-Fold Cross-Validation Results on the Chinese
Corpora: The ten-fold cross-validation results for the main
competing methods in Section IV-A2 are listed in Table VIII.
Based on the t-test, ρTl-LSTM significantly outperforms the
involved competing methods (p < 0.01) on all the three
datasets. Overall, the performances of the methods with char-
acter embedding are comparable to those of the methods with
word embedding.

2) Effect of Different Parameters on ρ-Hot Encoding: Our
ρ-hot encoding differs from one-hot encoding in two aspects.
The first aspect is that the nonzero values in one-hot encod-
ing are only equal to 1, whereas the nonzero values in ρ-hot
encoding are ρ. The second aspect is that only one element
in one-hot encoding is nonzero, whereas n elements in ρ-hot
encoding are nonzero.

In this experiment, we test whether ρ-hot encoding is use-
ful in two experimental runs. In the first run, the value of ρ

is manually set to 0.5 and 1 in the experimental run without
optimization. The parameter n in (6) is set as 15. The classi-
fication accuracies vary according to different ρ values on all
the three data corpora. When ρ equals 1, the accuracies are
the lowest in most cases shown in Fig. 8.

The results shown in Fig. 8 indicate that the value of ρ does
affect the performance of the entire network. Consequently, the
classical one-hot encoding, which fixes the value of nonzero
elements as 1, is ineffective. In our experiments, the learned
value of ρ is approximate 0.4.

In the second run, the performances under different n (i.e.,
1, 5, 10, and 15) are tested. Table IX shows the compari-
son results. The value of n does affect the performance of
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TABLE IX
ACCURACIES OF ρTL-LSTM WITH DIFFERENT n

VALUES IN ρ-HOT ENCODING

Fig. 9. Classification accuracies under different proportions of polar
words. #1-C and #1-W represent ρTl-LSTM-C and ρTl-LSTM-W on the
first (travel) corpus, respectively; #2-C and #2-W represent ρTl-LSTM-C
and ρTl-LSTM-W on the second (hotel) corpus, respectively; and #3-C and
#3-W represent ρTl-LSTM-C and ρTl-LSTM-W on the third (hotel) corpus,
respectively.

the entire network, thereby indicating that the introduction
of the n-duplicated strategy in encoding is effective. In the
experiments, when n is increasing, the accuracies first increase
and then decrease. The main reason may lie in the fact that
when n becomes large, the proportion of lexicon embedding
becomes large accordingly. An overlength input feature vec-
tor may incur “curse of dimensionality” and thus weaken the
performance of the proposed two-level network.

3) Effect of Polar Words: In this experimental run, we test
whether the labeled polar (negative and positive) words do
affect the performance of the entire method when they are
used in lexicon embedding. To this end, we order the polar
words according to their frequencies in the training data. Top
0%, 50%, and 100% polar words are used. The corresponding
classification accuracies are depicted in Fig. 9.

In most cases, the accuracies are the lowest when no polar
words are used in the lexicon embedding. When all polar
words are used, the proposed network achieves the highest
accuracies.

In the experiment, only one user is invited to manually
compile the dictionary for a data corpus. One and a half
hour is needed for each data corpus. In our viewpoint, it is
worth manually compiling the polar words for sentiment anal-
ysis by considering the performance improvement and time
consumption.

4) Effect of POS Cues: In this experimental run, we test
whether POS cues do play positive roles in the entire model.

Fig. 10. Classification accuracies with and without POS in lexicon embed-
ding. #1-C and #1-W represent ρTl-LSTM-C and ρTl-LSTM-W on the
first (travel) corpus, respectively; #2-C and #2-W represent ρTl-LSTM-C
and ρTl-LSTM-W on the second (hotel) corpus, respectively; and #3-C and
#3-W represent ρTl-LSTM-C and ρTl-LSTM-W on the third (hotel) corpus,
respectively.

Fig. 11. Classification accuracies with and without conjunction in lexicon
embedding. #1-C and #1-W represent ρTl-LSTM-C and ρTl-LSTM-W on
the first (travel) corpus, respectively; #2-C and #2-W represent ρTl-LSTM-C
and ρTl-LSTM-W on the second (hotel) corpus, respectively; and #3-C and
#3-W represent ρTl-LSTM-C and ρTl-LSTM-W on the third (hotel) corpus,
respectively.

To this end, we remove POS in the lexicon embedding of the
proposed method. The results are shown in Fig. 10.

In most cases, the accuracies with POS embedding are
greater than those without POS embedding, thereby indicating
that the application of POS to lexicon embedding is useful.

5) Effect of Conjunction Cues: In this experimental run,
we test whether conjunction cues do play positive roles in the
entire model. To this end, the lexicon embedding for conjunc-
tion words is also removed from the proposed method. The
results are shown in Fig. 11.

The algorithm with conjunction embedding outperforms that
without conjunction embedding consistently, thereby indicat-
ing that the application of conjunction to lexicon embedding
is useful.

6) Effect of Different Training Tricks: In this experimen-
tal run, we test the main competing methods under different
training tricks, including dropout, batch normalization (BN),
and pooling. Table X presents the accuracies of ρTl-LSTM
based on 10-cross-validation. These two training tricks do
not improve the performances. Table XI presents the accu-
racy comparison between average pooling and max pooling
when CNN-lex is used. The average pooling significantly
outperforms max pooling (p < 0.01).
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TABLE X
CLASSIFICATION ACCURACIES WITH DIFFERENT TRAINING TRICKS

TABLE XI
CLASSIFICATION ACCURACIES WITH TWO POOLING STRATEGIES

7) Summarization of the Experimental Comparisons:
According to the above experimental comparisons, our
proposed methodology has the following advantages.

1) The two-stage labeling strategy can provide more super-
vised information, which is useful for model training.

2) The proposed ρ-hot encoding is more flexible than the
one-hot encoding and is thus more useful for cues
embedding.

3) The embedding of more lexical cues integrates more
useful information related to sentiment orientations.
The flipping module is also helpful in performance
improvement.

V. CONCLUSION

High-quality labels are crucial for learning systems.
Nevertheless, texts with mixed sentiments are difficult for
humans to label in text sentiment classification. In this study,
a new labeling strategy was introduced to partition texts into
those with pure and mixed sentiment orientations. These two
categories of texts were labeled using different processes. A
two-level network was accordingly proposed to utilize the two
labeled data in our two-stage labeling strategy. Lexical cues
(e.g., polar words, POS, and conjunction words) are partic-
ularly useful in sentiment analysis. These lexical cues were
used in our two-level network, and a new encoding strategy,
that is, ρ-hot encoding, was introduced. ρ-hot encoding was
motivated by one-hot encoding. However, the former allevi-
ates the drawbacks of the latter. Due to labeling noise or
context, the polarity of a word varied in different texts. A
flipping model was proposed to model the polarity flipping
process. Three Chinese sentiment text data corpora were com-
piled to verify the effectiveness of the proposed methodology.
Our proposed method achieved the highest accuracies on these
three data corpora. On English data corpora, the proposed
method outperformed state-of-the-art algorithms.

The proposed two-level network and lexicon embedding can
also be applied to other types of deep neural networks. In
our future work, we will extend our main idea into several
networks and text mining applications.
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